
510 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 3, MAY 2011

A Petri Net Approach to Analyzing Behavioral
Compatibility and Similarity of Web Services

Xitong Li, Yushun Fan, Quan Z. Sheng, Member, IEEE, Zakaria Maamar, and Hongwei Zhu

Abstract—Web services have become the technology of choice
for service-oriented computing implementation, where Web ser-
vices can be composed in response to some users’ needs. It is
critical to verify the compatibility of component Web services to
ensure the correctness of the whole composition in which these
components participate. Traditionally, two conditions need to be
satisfied during the verification of compatibility: reachable termi-
nation and proper termination. Unfortunately, it is complex and
time consuming to verify those two conditions. To reduce the com-
plexity of this verification, we model Web services using colored
Petri nets (PNs) so that a specific property of their structures
is looked into, namely, well structuredness. We prove that only
reachable termination needs to be satisfied when verifying behav-
ioral compatibility among well-structured Web services. When a
composition is declared as valid and in the case where one of its
component Web services fails at run time, an alternative one with
similar behavior needs to come into play as a substitute. Thus, it
is important to develop effective approaches that permit one to
analyze the similarity of Web services. Although many existing
approaches utilize PNs to analyze behavioral compatibility, few of
them explore further appropriate definitions of behavioral similar-
ity and provide a user-friendly tool with automatic verification. In
this paper, we introduce a formal definition of context-independent
similarity and show that a Web service can be substituted by an
alternative peer of similar behavior without intervening other Web
services in the composition. Therefore, the cost of verifying service
substitutability is largely reduced. We also provide an algorithm
for the verification and implement it in a tool. Using the tool,
the verification of behavioral similarity of Web services can be
performed in an automatic way.

Index Terms—Behavioral compatibility, behavioral similarity,
Petri net (PN), service composition, Web service.

Manuscript received February 15, 2009; revised December 27, 2009 and
May 25, 2010; accepted July 29, 2010. Date of publication January 9, 2011;
date of current version April 15, 2011. This work was supported in part by
the National Natural Science Foundation of China under Grants 60674080 and
61033005, by the National High Technology Research and Development (863)
Program of China under Grant 2007AA04Z150, and by the National Basic
Research Development (973) Program of China under Grant 2006CB705407.
The work of Q. Z. Sheng was supported in part by the Australian Re-
search Council Discovery Grant DP0878367. This paper was recommended by
Associate Editor M. P. Fanti.

X. Li is with the MIT Sloan School of Management, Cambridge, MA 02142
USA, and also with the Department of Automation, Tsinghua University,
Beijing 100084, China (e-mail: xitongli@mit.edu; lxt04@mails.
tsinghua.edu.cn).

Y. Fan is with the Department of Automation, Tsinghua University, Beijing
100084, China (e-mail: fanyus@tsinghua.edu.cn).

Q. Z. Sheng is with the School of Computer Science, The University of
Adelaide, Adelaide, S.A. 5005, Australia (e-mail: qsheng@cs.adelaide.edu.au).

Z. Maamar is with the College of Information Technology, Zayed University,
Dubai, United Arab Emirates (e-mail: zakaria.maamar@zu.ac.ae).

H. Zhu is with the College of Business and Public Administration, Old
Dominion University, Norfolk, VA 23529 USA (e-mail: hzhu@odu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCA.2010.2093884

I. INTRODUCTION

THE DEVELOPMENT of Web applications are cumber-
some, costly, and time consuming due to various reasons

such as the increasing complexity of end-users’ needs, het-
erogeneity of various IT systems, and continuous pressure to
deliver up-to-date and reliable systems to end users [1], [2].
Web services are nowadays among the technologies of choice
for the development of Web applications. Web services are
universally accessible software components/applications that
can be discovered and invoked using open-standard Internet
protocols [3]. Composition, whereby multiple independent Web
services are assembled to accomplish a more complex task, is
one of the key motivations to embrace Web services [4], [5].

To guarantee the successful execution of composition sce-
narios, component Web services from independent providers
need to be verified in order to ensure that mutual interactions
between them do not lead to any conflicts or deadlocks [6].
Specifically, we need to verify the compatibility of the partici-
pating Web services. There are three aspects of compatibility:
syntactic, semantic, and behavioral [7]–[9]. Syntactic compati-
bility means that the structural interfaces of the interacting Web
services are consistent, e.g., the labels of corresponding mes-
sages and data types are the same. Currently, the Web Service
Description Language (WSDL) provides a standardized way
to specify these structural interfaces. Semantic compatibility
means that the interacting Web services exchange information
that can be understood in a consistent and unambiguous way.
Finally, behavioral compatibility means that the interacting
Web services agree on what to expect from each other in terms
of operations to execute, outcomes to deliver, and messages
to send and receive. Behavior herein refers to the possible
sequences of messages that Web services mutually exchange in
response to some triggers or business dependences. Although
syntactic and semantic compatibilities are critical, this paper
focuses on Web services’ behaviors in terms of behavioral
compatibility and similarity. Intuitively, behavioral similarity
means that the behaviors of two Web services overlap to a
certain extent and one Web service can be substituted by the
other in a composition.

There exist a good number of approaches to verifying be-
havioral compatibility of Web services. Different formalisms
are used, including finite-state machine (FSM) [8], [10], [11],
process algebra/pi calculus [12], [13], and Petri nets (PNs)
[14]–[17]. These formalisms reflect the different ways of ad-
dressing the compatibility issue. In [8], behavioral compatibil-
ity means that the order (i.e., sequence) of messages exchanged
with external partners and observed from one Web service is

1083-4427/$26.00 © 2011 IEEE

LI et al.: PN APPROACH TO ANALYZING BEHAVIORAL COMPATIBILITY AND SIMILARITY OF WEB SERVICES 511

preserved if it is observed from another Web service. Unfortu-
nately, this notion of behavioral compatibility cannot be used to
verify whether the respective processes of the interacting Web
services can successfully terminate, as another Web service
may exhibit additional behaviors that cause certain errors. The
work presented in [18] focuses on high-level units of collabora-
tive business processes and presents a scenario-based technique
for the compatibility verification among the collaborations.
The scenario-based modeling technique is different from the
message-based modeling approach [14]–[17] that is adopted in
our work. In [14], the concept of weak soundness is adopted to
define behavioral compatibility. However, the weak soundness
derived from the traditional workflow theory is too narrow; it
does not reflect the properties of Web services like autonomy,
loosely coupledness, and asynchronous communication. For
example, a correct composition may still contain unprocessed
internal/external messages even when the component Web ser-
vices have successfully terminated. However, this situation is
not allowed under the condition of weak soundness. Further-
more, the internal choices of Web services are not addressed by
the models in [14]. To this end, this paper aims to address these
shortcomings and provides an appropriate notion of behavioral
compatibility for Web services composition. Specifically, we
develop the Service Workflow Net (SWN) formalism based
on colored PNs (CPNs) in order to model Web services. The
formalism depicts not only the observable message exchange
sequences but also the internal and external messages buffered
and the choices made by the component Web services. These
details are useful in the analysis of behavioral compatibility
and similarity of Web services. For example, the condition of
behavioral compatibility in this paper is relaxed to allow un-
processed internal messages when the processes of interacting
Web services complete.

Traditionally, two conditions need to be checked in order
to verify behavioral compatibility of Web services: reachable
termination and proper termination [14], [15], [17]. Reachable
termination means that each Web service in a composition can
eventually reach a terminal state to announce its completion.
Proper termination means that all control flows [19] of the
Web service should terminate when the composition reaches
a terminal state. Both conditions can be used to address the
behavioral adaptation of Web services [20]. Unfortunately,
verifying proper termination requires examining all reachable
terminal states of the composition. In the case of a large number
of states, the enumerative examination of these states is very
costly and time consuming. It is thus deemed appropriate to
relax the condition of proper termination so that the complexity
of verifying compatibility can be reduced. To this end, we
look into the structure of the Petri-net-based models of Web
services and introduce the concept of well structuredness which
characterizes a property of the structure of Web services. We
show that only the requirement of reachable termination needs
to be satisfied when verifying behavioral compatibility of well-
structured services.

Due to the dynamic environment in which Web services run,
a Web service involved in a composition may fail to respond to
client’s requests or to maintain a satisfying quality-of-service
level [21]. In both situations, an alternative Web service of

similar behavior needs to be identified and used to substitute
the failed one. This becomes another significant research issue
in service-oriented computing (SOC), i.e., Web services substi-
tution [22], [23]. Analyzing behavioral similarity, also known
as substitutability or replaceability [12], [23], [24], is thus of
great importance to Web services substitution and goes along
with the general idea of behavioral compatibility between the
substituting Web service and the partners of the substituted Web
service.

In [8], the notion of similarity based on execution traces is
proposed, which states that Web service ws2 is similar to Web
service ws1 if each possible trace in ws1 must be preserved
in ws2. The notion of simulation is used in [10] to compare
protocols of Web services with respect to their complete exe-
cution trees. However, neither trace equivalence nor simulation
is exactly suitable for Web services, because the notion based
on execution traces is too broad while the notion based on
simulation is too narrow [12], [25]. Based on the principle
of behavior subtyping [26], the concept of substitutability is
presented to analyze protocols of software components [24]. In
[12], the notion of replaceability of Web services is proposed
by using behavior subtyping. However, neither the formal con-
dition of substitutability (i.e., replaceability) nor an algorithm
for verifying substitutability is presented in [12] and [24].

Intuitively, ws2 is similar to ws1 if ws2 behaves like ws1 in
a comparable situation. Several notions of behavioral similarity
are reported in the literature with different interpretations of
the terms “behave like” and “comparable situation” [25], [27].
“Behave like” means that all possible sequences of exchanged
messages of ws1 are preserved by ws2 and ws2 does not extend
the behavior of ws1. “Comparable situation” means that ws1 is
substituted by ws2 in a transparent way to the partners of ws1,
i.e., ws2 should be compatible with any Web service that is
compatible with ws1.

With these two interpretations in mind, we propose the
concept of behavioral similarity which is considered to be
context independent. The context of ws1 herein refers to the
interacting partners of ws1 in a composition. In the case where
the composition is valid, the interacting partners of ws1 should
be compatible with ws1. In the sense of context-independent
similarity, substituting ws1 in the composition with a similar
service ws2 can be directly performed, since ws2 is compat-
ible with other services in this composition. The concept of
context-independent similarity guarantees the compatibility of
ws2 with the partners of ws1 in the composition. Informally,
the sufficient conditions that ws2 is similar to ws1 are as
follows: 1) ws2 preserves the behavior of ws1; 2) ws2 does
not extend the behavior of ws1; and 3) the process of ws2
terminates when ws1 terminates. Similar concepts of context-
independent similarity of Web services can be found in [23],
[25], and [27]. However, none of these efforts formalize the
conditions that context-independent similarity should satisfy.
Without a formal definition of the conditions, the verification
of behavioral similarity cannot be performed automatically.
Furthermore, for analyzing the behaviors of Web services, the
global and internal choice branches play a significant role and
need to be represented in Web service models [28]. However,
the choice branches are ignored in [27]. The reason is that the

512 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 3, MAY 2011

formalism adopted in [27], i.e., labeled transition systems, has
weaker capability than PNs with respect to depicting internal
choice branches or asynchronous communications of Web ser-
vices. To address these weaknesses of prior research works, we
have investigated the observable message sequences of Web
services and the relations of similarity between the message
sequences. Based on our investigation, we provide the sufficient
conditions of context-independent similarity and a correspond-
ing algorithm for verifying the similarity. We develop a tool to
automate the verification of similarity between Web services
using this algorithm. The tool is integrated within the Platform-
Independent PN Editor (PIPE) [29].

The rest of this paper is organized as follows. Section II
presents the formalism for modeling the behaviors of Web
services. Section III describes our approach to the compatibility
analysis of the behaviors of Web services. Section IV proposes
our approach to similarity analysis and the algorithm to verify
the similarity. Section V describes the tool for verifying the
behavioral similarity and equivalence of Web services. Finally,
Section VI concludes this paper.

II. FORMALISM OF SWNs

We develop SWNs as the underlying formalism for depicting
the behaviors of Web services. An SWN extends a CPN [30].
CPNs have a well-defined semantics for describing both states
and actions of concurrency systems and a graphical represen-
tation which is easy to understand. The behavior of a CPN
model can be analyzed by means of either several formal
analysis methods or simulation. CPN-based models not only
provide a formalism to depict the internal logics and message
exchange sequences (i.e., behaviors) but also encompass the
mechanisms of compatibility and similarity analysis of Web
services. Therefore, in the literature, many initiatives propose to
model the behaviors of Web services based on CPNs [14]–[17].
The definition of the CPN is presented hereinafter. Detailed
definitions can be found in [30].

Definition 1 (CPN): A CPN is a tuple CPN =
(Σ, P, T, F, C,G,E,Mi), where its elements are defined
as follows.

1) Σ is a finite set of nonempty types, also called color set.
It is a multiset that allows duplicate elements.

2) P is a finite set of places.
3) T is a finite set of transitions, disjoint from P .
4) F ⊆ (P × T) ∪ (T × P) is a flow relation F . C is a

color function, defined from P into Σ.
5) G is a guard function, i.e., G : T →

BoolExpression, and ∀ t ∈ T : Type(G(t)) =
Bool ∧ Type(V ar(G(t))) ⊆ Σ.

6) E is the arc expression function, i.e., E : F →
BoolExpression, and ∀ f ∈ F : Type(E(f)) =
C(p)MS ∧ Type(V ar(E(f))) ⊆ Σ, where p is the place
that is connected to f .

7) Mi is an initiation function, i.e., Mi : P → Σ.

In our work, we model the behavior of a Web service using
an SWN defined as follows.

Definition 2 (SWN): An SWN is an extended CPN with
labels, denoted as SWN = (CPN,A,L), where the CPN
distinguishes three disjoint types of places.

1) P = P IC ∪ P IM ∪ PEM, where P IC is the set of internal
control places, P IM is the set of internal message places,
and PEM is the set of external message places. P IC ∩
P IM = ∅, P IC ∩ PEM = ∅, and P IM ∩ PEM = ∅.

2) P IC has two special places, i.e., i and o. The initial place
i satisfies •i = ∅, and the final place o satisfies o• = ∅.

3) If all places in PEM and all arcs connecting to these
places are removed, the workflow net of the Web service
is obtained. It is denoted as CPN = Φ(SWN). If a
transition t∗ to a CPN that connects o to i (i.e., •t∗ =
{o}, t∗• = {i}) is added, then the resulting PN becomes
strongly connected.

4) Mi(i) �= 0 and ∀ p ∈ P , p �= i, we have Mi(p) = 0. Mi

is the initial marking.
5) A is a finite set of labels. ∀ a ∈ A is a label of string type,

and ∃τ ∈ A is a “silent” label.
6) L is a labeling function, i.e., L : T → A.

In Definition 2, the places in P IC represent the control flow
[19] of the Web service. The places in P IM and PEM represent
the internal and external message buffers, respectively. Each
transition connecting to P IM or PEM is an interaction tran-
sition representing an action that sends or receives messages.
A contains the operating semantics of the Web service, and
every label in A represents an operation name. Each transition
of the SWN is mapped onto an operation name by L. Silent
label τ is mapped onto those transitions that represent internal
actions that are unobservable from the external environment.
To differentiate the transitions of incoming/outgoing messages,
the polarity function for these transitions is defined and denoted
as ϕ : T → {+1, 0,−1}, i.e., ϕ(t) = −1, if t depicts an action
of sending messages; ϕ(t) = +1, if t depicts an action of
receiving messages; and ϕ(t) = 0, if t depicts an action without
sending or receiving messages. Apparently, ϕ(τ) = 0.

Various specification languages for Web services compo-
sition exist, such as Business Process Execution Language
(BPEL), Web Services Choreography Description Language,
and Web Service Choreography Interface. Among them, BPEL
obtains the dominance and has been proposed by OASIS as
an industrial standard supported by major software vendors
such as IBM, Oracle, and SAP. The behaviors of Web services
described in BPEL specification can be smoothly transformed
into SWNs. Detailed approaches to the transformation are given
in [16] and [17]. It should be noted that the Petri-net-based
service models used by those approaches [16], [17] are different
from the models of Definition 2 in the sense that only external
message places are depicted in their models while internal
message places are ignored. Hence, the requirements of be-
havioral compatibility proposed in their works are too narrow:
They require that there exists no token in the internal message
places when Web services processes successfully terminate. In
fact, the internal message places may retain tokens in such
cases which reflect the properties of Web services, like loosely
coupledness and asynchronous communication.

LI et al.: PN APPROACH TO ANALYZING BEHAVIORAL COMPATIBILITY AND SIMILARITY OF WEB SERVICES 513

Fig. 1. SWN of Web service ws1.

Fig. 1 shows a graphical representation of Web service ws1
using an SWN. For the declarations in Fig. 1, the color set
R has two elements r1 and r2 corresponding to two different
request categories processed by ws1. The color set M has one
element m representing the messages. Type I represents the
integers, and type P is the Cartesian product of the two color
sets R and I—these declarations will be used throughout the
examples in this paper. In Fig. 1, we use circles to represent the
internal control places having the type P as the color set and
ovals to represent the message places having the type M. Note
that p5 is an internal message place, while p6 ∼ p9 are external
message places. After receiving the purchase request from a
client, ws1 initiates two parallel branches. One branch expects
to receive the client’s profile and provides the client’s credit
information (modeled by place p5) to the other branch. Accord-
ing to the request category (e.g., r1 or r2), the other branch
decides whether the client’s credit information is required. If
the purchase request x is r1 with specials, ws1 needs to check
the client’s credit and then sends the confirmation. Otherwise,
ws1 sends confirmation directly in the case that the request x
is r2. Both branches are synchronized by the delivery action.
As shown in Fig. 1, transition t3 has a guard “[x = r1],” and
transition t4 has a guard “[x = r2].”

When Web services are composed together, some of their
external message places are merged to form internal message
places of the composite Web service. These internal message
places should be identified in the SWN models of Web services,
such as p5 in Fig. 1. Apparently, internal message places (e.g.,
p5) are different from control-flow places (e.g., p1 ∼ p4) and
external message places (e.g., p6 ∼ p9)—we will show later
how internal message places affect the behavioral compatibility
of Web services. As a result, we consider that our service
model as in Definition 2 is more reasonable than other service
models presented in [16] and [17], since they are developed
based on the traditional workflow theory and ignore internal
message places that result from the composition of multiple
Web services.

At the initial marking Mi, only the initial place i has tokens,
i.e., Mi = [i]. A transition t is enabled in marking Mj , denoted
as Mj [t >. After t fires, the marking changes from Mj to Mk,
denoted as Mj [t > Mk. After a sequence of transitions (i.e.,
σ ∈ T ∗) fires, the marking changes from Mi to Mk, denoted
as Mi[σ > Mk. The set of markings that are reachable from
a marking M is denoted as R(M) = {M ′|∃σ ∈ T ∗,M [σ >
M ′}. A marking Mf is a final marking if Mf ∈ R(Mi) and
Mf (o) �= 0. The set of all final markings is denoted as F .
Detailed notations of CPN can be found in [30].

With the capability of detecting all completion incompatibil-
ities (e.g., deadlocks), the concept of completion compatibility
has become the most recognized notion of behavioral compat-
ibility of Web services [17], [23], [31]. We thus adopt it as the
foundation of our formal definition of behavioral correctness
of SWN. Intuitively, an SWN is behaviorally correct if it
always interacts properly with its partners, i.e., its process can
successfully terminate without any deadlock. We distinguish
the final markings of SWN into correct and false ones.

Definition 3 (Correct Final Marking): A final marking Mf

of SWN is correct, denoted as Mcf , iff ∀p ∈ P IC, p �= o :
Mf (p) = 0. Otherwise, Mf is false. The set of all correct final
markings is denoted as FC .

According to Definition 3, when an SWN is in a correct final
marking, the final place o must contain some token(s), and any
other internal control place contains no token. Note that there
may remain some token(s) in internal and/or external message
places. In such a case, we consider that the process of the SWN
successfully terminates. Take ws1 in Fig. 1 as an example. The
client credit is provided in place p5 regardless of the request
category. The message token in p5 will not be consumed in the
case of nonspecial purchase request, i.e., the guard [x = r2] is
true. However, the processes of both branches of ws1 can still
successfully terminate in this situation. Based on the notion of
Definition 3, [p5, o] is one of the correct final markings of ws1,
and [o] is the other correct final marking.

Definition 4 (Reachable Transition Sequence): A transition
sequence σ = 〈t1, t2, . . . , tn >∈ T ∗ is a reachable transition
sequence of an SWN iff ∃M : Mi[σ > M . Σ(SWN) is the
set of all reachable transition sequences of the SWN, i.e.,
Σ(SWN) = {σ|σ ∈ T ∗, ∃M : Mi[σ > M}.

Definition 5 (Behavioral Correctness): The behavior of an
SWN is correct iff, when the environment satisfies the require-
ment of external messages, for any reachable nonfinal marking
of SWN, there exists a transition sequence that leads to a
final marking, and all final markings must be correct, i.e., as
follows.

1) ∀M ∈ R(Mi), M /∈ F , and σ ∈ T ∗, such that M [σ >
Mf ∈ F .

2) FC = F .

By the environment satisfying the requirement of external
messages, we mean that the environment always sends/receives
a message whenever the SWN is expected to receive/send
such a message. The requirement of the “perfect” environment
removes the possibility that the external partners are the causes
of critical errors (e.g., deadlocks) during the execution of the
SWN. Thus, the reachability of the correct final markings can

514 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 3, MAY 2011

Fig. 2. SWN of Web service ws2 with incorrect behavior.

be used to verify the behavioral correctness of the SWN. We
assume that such a “perfect” environment in Definition 5 exists,
which is a reasonable assumption, as discussed in [14]. When
performing verification, we just remove all the places in PEM

and the arcs connecting to them. In other words, the verification
of correctness only needs to be performed on the workflow net
of the SWN, i.e., CPN = Φ(SWN). The first condition of
Definition 5 requires that every marking that is reachable from
the initial marking can reach a final marking, which is referred
to as reachable termination (also known as deadlock freeness).
The second condition of Definition 5 requires that the reachable
final markings are correct in the sense of Definition 3, which is
referred to as proper termination.

It should be pointed out that the existing Petri-net-based
models of Web services only consider external message places
rather than internal ones, such as in [14]–[17]—in those models
all internal places are control places. According to the tradi-
tional workflow theory, the existence of any token in the internal
places is not allowed when the interacting Web services pro-
cesses complete. Otherwise, the Web services are considered
to be incompatible. In contrast, Definition 5 requires a more
relaxed condition than the notions of soundness of Web services
proposed in [14] and [17], as Definition 5 allows the possible
existence of token(s) in the internal and/or external message
places after the process of the Web service terminates. Again,
take ws1 in Fig. 1 as an example. [p5, o] and [o] are both correct
final markings of ws1 that are reachable from its initial marking
[i], which is verified using the methods of reachable analysis. In
fact, the behavior of ws1 is correct according to Definition 5.

Fig. 2 shows the SWN of another Web service ws2 with
incorrect behavior. For the sake of simplicity, the declarations
and business semantics of ws2 (and the other examples in the
rest of this paper) are omitted. Note that transition t4 fires when
the guard [x = r2] is true. In such a case, ws2 reaches the
marking [p1, o], which is an incorrect final marking, because
p1 is a control place and cannot contain token(s) in a correct
final marking. Thus, ws2 has incorrect behavior according to
Definition 5.

III. COMPATIBILITY ANALYSIS OF WEB SERVICES

If a Web service with incorrect behavior participates in a
composition, it may result in serious errors, e.g., deadlocks,
during the execution of the composition. In the following dis-
cussion, we only consider the case where the component Web
services in a composition have correct behaviors (according
to Definition 5). In this case, whether the composition can
properly execute or not depends on the behavioral compatibility
of its participating Web services.

Definition 6 (Behavioral Compatibility): Two SWNs
SWN1 and SWN2 are compatible, denoted as
SWN1 ∼ SWN2, iff the behavior of their composite
Web service SWN = SWN1 ⊕ SWN2 is correct.

In the aforementioned definition, the composition operator ⊕
is used to indicate a composite Web service consisting of two
component Web services. In other words, SWN = SWN1 ⊕
SWN2 means that SWN is a composite Web service com-
posed of SWN1 and SWN2. The formal definition of Web
services composition is based on place fusion and presented
in our previous work [17]. It is straightforward to see the
symmetry property of behavioral compatibility, i.e., SWN1 ∼
SWN2 ⇔ SWN2 ∼ SWN1.

As mentioned in Definition 5, the notion of behavioral cor-
rectness requires two conditions, i.e., reachable termination
and proper termination. According to Definition 6, analyzing
the behavioral compatibility is subject to verifying these two
conditions. To simplify the verification, we investigate a set of
Web services with specific structures, i.e., those that are well
structured. For well-structured Web services, we will conclude
later that only the condition of reachable termination (i.e., dead-
lock freeness) is sufficient to claim the behavioral compatibility.

Definition 7 (Well-Structured SWN): An SWN is well struc-
tured iff, after removing all places in PEM and all arcs connect-
ing to these places, the remaining workflow net, i.e., CPN =
Φ(SWN), is well structured.

The definition of well-structured Web services is based on the
concept of well-structured workflow nets [26], [32]. Intuitively,
well structuredness characterizes a property of the structure of
Web services. That is, two parallel branches of a Web service
initiated by an AND split should not be joined by an OR joint;
they should instead be synchronized by an AND joint. Similarly,
two alternative branches created by an OR split should not be
synchronized by an AND joint; they should be joined by an OR

joint.
Fig. 3 shows the SWN of a well-structured Web service ws3,

where the OR split at p1 is joined by the OR joint at o. However,
the SWN of ws2 in Fig. 2 is not well structured because the
AND-split transition t1 is complemented by the OR-joint place
o. There are two disjoint paths leading from t1 to o: one via p1,
t2, p2, and t5 and the other via p3 and t4. The SWN of ws1
shown in Fig. 1 is another example of an SWN, which is not
well structured, as the AND split t1 is complemented by the OR

joint p4.
Theorem 1: Given two well-structured services SWN1 and

SWN2 and their composite Web service SWN = SWN1 ⊕
SWN2, each final marking of SWN that is reachable from the
initial marking is correct, i.e., FC = F .

LI et al.: PN APPROACH TO ANALYZING BEHAVIORAL COMPATIBILITY AND SIMILARITY OF WEB SERVICES 515

Fig. 3. SWN of a well-structured Web service ws3.

Proof (Proof by Contradiction): If we assume that FC �=
F , then ∃Mf ∈ F and Mf /∈ FC since FC ⊆ F . With Mf ∈
F , we have Mf ∈ R(SWN,Mi) and Mf (o) �= 0. With Mf /∈
FC , we have ∃p ∈ P IC, where p �= o, and Mf (p) �= 0. Accord-
ing to the definition of Web service composition, P IC = P IC

1 ∪
P IC
2 ∪ {i, o}. If p = i, then ∃M ′

f ∈ F , such that M ′
f (i1) �= 0

and M ′
f (i2) �= 0. Hence, we can assume that p ∈ P IC

1 or p ∈
P IC
2 . Without loss of generality, let p ∈ P IC

1 . As Mf is a final
marking of SWN , there exists a final marking M1f of SWN1

that is reachable, such that M1f (o1) �= 0 and M1f (p) �= 0.
Because of the second condition of Definition 2, there is an
elementary path C1 of SWN1 between i1 and o1, such that
p �= C1. Similarly, there is another elementary path C2 of
SWN1 between i1 and o1, such that p ∈ C2, and C2 �= C1.
Since both C1 and C2 start from i1 and terminate at o1, and
M1f (o1) �= 0 and M1f (p) �= 0, then there exists a transition t ∈
C1 ∩ C2. Moreover, we know that o1 ∈ C1 ∩ C2. This situation
is contrary to the assumption that SWN1 is well structured.
Thus, Theorem 1 is proved. �

As mentioned before, two conditions need to be verified
for checking the behavioral compatibility of Web services,
i.e., reachable termination and proper termination. Owing to
Theorem 1, we conclude that only the condition of reachable
termination (i.e., deadlock freeness) needs to be considered
when verifying the behavioral compatibility of well-structured
services. Based on Theorem 1, we have the following result.

Theorem 2: Given two well-structured services SWN1 and
SWN2 and their composite Web service SWN = SWN1 ⊕
SWN2, SWN1 and SWN2 are compatible, i.e., SWN1 ∼
SWN2, iff ∀M ∈ R(SWN,Mi), M �= F , ∃σ ∈ Σ(SWN),
such that M [σ > Mf ∈ F .

Proof: According to Definition 6, SWN1 ∼ SWN2 ⇔
the behavior of SWN is correct. Owing to Theorem 1, we
know that FC = F for well-structured services. Hence, the
behavior of SWN is correct ⇔ ∀M ∈ R(SWN,Mi), M /∈
F , ∃σ ∈ Σ(SWN), such that M [σ > Mf ∈ F , according to
Definition 5. �

It is worth mentioning that the composition of three or more
Web services is similar to the composition of two Web services.

Thus, the aforementioned two theorems can be easily extended
to the situations of multiple Web services. Hence, Theorem 2
can be applied to reduce the complexity of behavioral compati-
bility analysis of Web services.

IV. SIMILARITY ANALYSIS OF WEB SERVICES

From the perspective of facilitating Web services substi-
tution, the behavioral similarity analysis of Web services is
closely dependent on compatibility analysis—they are the two
flip sides of the substitution coin [12], [27]. Two similar Web
services do not have to require that their internal processes
are exactly the same. Generally, only the observable behaviors
of these two Web services are required to be similar. Thus,
the focus of analyzing their similarity is on their observable
behaviors. Informally, the observable behavior refers to the
message exchange sequence of a Web service that depicts
the interactions of the Web service with its external environ-
ment, e.g., client applications and partner services. To analyze
behavioral similarity, several formal definitions of observable
behavior are proposed as follows.

Definition 8 (Interaction Transition Sequence): Given a
reachable transition sequence σ ∈ Σ(SWN), after removing
the internal transitions of σ, we call the remaining sequence ε ∈
〈t′1, t′2, . . . , t′k〉 the interaction transition sequence of σ, where
L(t′l) �= τ , l = 1, . . . , k. Accordingly, we denote the operation
of obtaining an interaction transition sequence as an operator ε.

Definition 9 (Similar Transition Sequence): Given two
reachable transition sequences σ1 ∈ Σ(SWN1) and σ2 ∈
Σ(SWN2), where ε1 = ε(σ1) = 〈t11, t12, . . . , t1k〉 and ε2 =
ε(σ2) = 〈t21, t22, . . . , t2l 〉, σ2 is similar to σ1, denoted as σ2 ≈
σ1, iff k = l ∀ j = {1, . . . , k}, L(t1j) = L(t2j), ϕ(t

1
j) = ϕ(t2j),

and G(σ1) = G(σ2), where G(σ1) = G(t11) ∧G(t12) ∧ · · · ∧
G(t1k) and G(σ2) = G(t21) ∧G(t22) ∧ · · · ∧G(t2l).

Definition 10 (Opposite Transition Sequence): Given
two reachable transition sequences σ1 ∈ Σ(SWN1),
σ2 ∈ Σ(SWN2), and ε1 = ε(σ1) = 〈t11, t12, . . . , t1k〉,
ε2 = ε(σ2) = 〈t21, t22, . . . , t2l 〉, σ1 is the opposite transition
sequence of σ2, denoted as σ1 ≈ σ2, iff k = l ∀ j = {1, . . . , k},
L(t1j) = L(t2j), ϕ(t1j) = −ϕ(t2j), and G(σ1) = G(σ2),
where G(σ1) = G(t11) ∧G(t12) ∧ · · · ∧G(t1k) and G(σ2) =
G(t21) ∧G(t22) ∧ · · · ∧G(t2l).

Based on the aforementioned definitions, we propose the
definition of behavioral similarity of two Web services and the
definition of behavioral equivalence.

Definition 11 (Behavioral Similarity): Given two Web ser-
vices SWN1 and SWN2, SWN2 is similar to SWN1, de-
noted as SWN2 � SWN1, iff ∀σ2 ∈ Σ(SWN2), M2i[σ2 >
M2, then ∃σ1 ∈ Σ(SWN1) and M1i[σ1 > M1, where σ1 ≈
σ2, such that either of the following conditions holds.

1) If M1 ∈ F1 or M1[τ
∗ > M1f ∈ F1, then M2 ∈ F2 or

M2[τ
∗ > M2f ∈ F2.

2) If ∃t1 ∈ T1, t1 �= τ , M1[τ
∗ > M ′

1 /∈ F1,M
′
1[t1 >, then

∃t2 ∈ T2, t2 �= τ , such that L(t2) = L(t1), ϕ(t2) =
ϕ(t1) and M2[τ

∗ > M ′
2 /∈ F2, M ′

2[t2 >.

Definition 12 (Behavioral Equivalence): Given two Web
services SWN1 and SWN2, SWN1 is equivalent to SWN2,

516 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 3, MAY 2011

denoted as SWN1 ≈ SWN2, iff SWN1 � SWN2 and
SWN2 � SWN1.

Complying with the standard similarity notions, the behav-
ioral similarity defined in Definition 11 is a specific type
of relation between the states of two SWNs. According to
Definition 11, SWN2 being similar to SWN1 does not mean
that SWN1 is similar to SWN2. Hence, the symmetry prop-
erty of behavioral similarity does not hold in the sense of
Definition 11. Definition 12 requires that two SWNs are be-
haviorally equivalent only if one is similar to the other and vice
versa. Apparently, we have the symmetry property of behav-
ioral equivalence of Web services, i.e., SWN1 ≈ SWN2 ⇔
SWN2 ≈ SWN1. It is easy to prove that both the similarity
and the equivalence of Web services hold the transitivity prop-
erty, i.e., as follows.

1) SWN1 � SWN2, SWN2 � SWN3 ⇒ SWN1 �
SWN3.

2) SWN1 ≈ SWN2, SWN2 ≈ SWN3 ⇒ SWN1 ≈
SWN3.

As discussed earlier, substitution using a similar Web service
needs to be independent of (i.e., transparent to) the context
of the substituted Web service; context herein refers to other
partner Web services in the composition regarding the substi-
tuted Web service. Therefore, substituting a Web service in a
composition with another similar one can be performed in a
transparent way—we do not need to verify whether the substi-
tuting Web service is compatible with other partner Web ser-
vices in the new composition. Hence, the cost of Web services
substitution in the sense of context-independent similarity is
largely reduced. Herein, we will prove that if one Web service A
is behaviorally similar to another Web service B in the sense of
Definition 11, then A is compatible with any partners of B in
the composition.

Definition 13 (Projection): Given two reachable transi-
tion sequences σ1 ∈ Σ(SWN1), σ2 ∈ Σ(SWN2), and ε1 =
ε(σ1) = 〈t11, t12, . . . , t1k〉, ε2 = ε(σ2) = 〈t21, t22, . . . , t2l 〉, for i =
{1, . . . , k} and t1i , if ∀ t2j , j = {1, . . . , l}, L(t1i) �= L(t2j), then
we remove t1i from σ1. The remaining sequence is regarded as
the projection of σ1 on σ2, denoted as Pσ2

(σ1). Similarly, we
get the projection of σ2 on σ1, denoted as Pσ1

(σ2).
Definition 13 is used to simplify the representation of the fol-

lowing lemma. Informally, Pσ2
(σ1) is the remaining transition

sequence of σ1 in which the transitions that are irrelevant to
σ2 are removed from σ1—only the transitions of σ1 that are
relevant to σ2 need to be considered. Pσ1

(σ2) is the remaining
transition sequence of σ2 in which the transitions that are
irrelevant to σ1 are removed from σ2.

Lemma: Given two well-structured Web services SWN1

and SWN2, SWN1 ∼ SWN2, iff ∀σ1 ∈ Σ(SWN1), ∀σ2 ∈
Σ(SWN2), M1i[σ1 > M1, M2i[σ2 > M2, σ′

1 = Pσ2
(σ1),

σ′
2 = Pσ1

(σ2), if σ′
1 ≈ σ′

2, then either of the following condi-
tions holds.

1) M1 ∈ F1 or M1[τ
∗ > M1f ∈ F1, and M2 ∈ F2 or

M2[τ
∗ > M2f ∈ F2.

2) ∃t1 ∈ T1, where t1 �= τ , and ∃t2 ∈ T2, where t2 �= τ ,
such that L(t1) = L(t2), ϕ(t1) = −ϕ(t2), and M1[τ

∗ >
M ′

1 /∈ F1, M ′
1[t1 >,M2[τ

∗ > M ′
2 /∈ F2,M

′
2[t2 >.

Proof: We denote the composite Web service SWN =
SWN1 ⊕ SWN2. On one hand, if SWN1 ∼ SWN2 and
σ′
1 ≈ σ′

2, then the composite Web service SWN can reach
a marking M . If M is a final marking, then we know that
M1 ∈ F1 and M2 ∈ F2. Otherwise, neither SWN1 nor SWN2

reaches a final marking, and ∃σ ∈ Σ(SWN), such that M [>
Mf ∈ F , according to Theorem 2. Hence, ∃t1 ∈ T1, where
t1 �= τ , and ∃t2 ∈ T2, where t2 �= τ , such that L(t1) = L(t2),
ϕ(t1) = −ϕ(t2), and M1[τ

∗ > M ′
1 /∈ F1, M ′

1[t1 >, M2[τ
∗ >

M ′
2 /∈ F2, M ′

2[t2 >.
On the other hand, since σ′

1 ≈ σ′
2, we know that the

composite Web service SWN can reach a marking M . If M is
not a final marking, then either M1[τ

∗ > M ′
1 ∈ F1, M2[τ

∗ >
M ′

2 ∈ F2, or ∃t1 ∈ T1, t1 �= τ , ∃t2 ∈ T2, t2 �= τ , such that
L(t1) = L(t2), ϕ(t1) = −ϕ(t2), and M1[τ

∗ > M ′
1 /∈ F1,

M ′
1[t1 >, M2[τ

∗ > M ′
2 /∈ F2, M ′

2[t2 >. In both cases, we
have ∃σ ∈ Σ(SWN), such that M [σ > Mf ∈ F . According
to Theorem 2, we know that SWN1 ∼ SWN2. �

Theorem 3: Given well-structured services SWN1, SWN2,
and SWN , we have

SWN2 � SWN1, SWN ∼ SWN1 ⇒ SWN ∼ SWN2.

Proof: ∀σ ∈ Σ(SWN), σ2 ∈ Σ(SWN2), Mi[σ > M ,
M2i[σ2 > M2, σ′ = Pσ2

(σ), σ′
2 = Pσ(σ2). Suppose that σ′

2 ≈
σ′. Since SWN2 � SWN1, then ∃σ1 ∈ Σ(SWN1), such that
M1i[σ1 > M1 and σ1 ≈ σ2, according to Definition 11. Sup-
pose that σ′

1 = Pσ(σ1). Thus, we have σ′
1 ≈ σ′

2. Therefore,
σ′
1 ≈ σ′. According to SWN ∼ SWN1 and the Lemma, one

of the following two conditions holds.

1) M ∈ F or M [τ ∗ > Mf ∈ F , and M1 ∈ F1 or M1[τ
∗ >

M1f ∈ F1.
2) ∃t ∈ T , where t �= τ , and ∃t1 ∈ T1, where t1 �= τ , such

that L(t) = L(t1), ϕ(t) = −ϕ(t1), and M [τ ∗ > M ′ /∈
F , M ′[t >, M1[τ

∗ > M ′
1 /∈ F1, M ′

1[t1 > tT .

According to SWN2 � SWN1 and Definition 11, if M1 ∈
F1 or M1[τ

∗ > M1f ∈ F1, then M2 ∈ F2 or M2[τ
∗ > M2f ∈

F2. If ∃t1 ∈ T1, t1 �= τ , M1[τ
∗ > M ′

1 /∈ F1, M ′
1[t1 >, then

∃t2 ∈ T2, t2 �= τ , such that M2[τ
∗ > M ′

2 /∈ F2, M ′
2[t2 >, and

L(t2) = L(t1), ϕ(t2) = −ϕ(t1). According to the Lemma, we
have SWN ∼ SWN2. �

Theorem 3 presents an interesting fact regarding the well-
structured Web services. If a well-structured Web service
SWN2 is similar to SWN1, then for any other well-structured
Web service SWN that is compatible with SWN1, SWN2

is also compatible with SWN . This is very useful for Web
services substitution. Suppose that SWN1 is a component
Web service in a certain composition. When SWN1 fails to
work or could not satisfy the nonfunctional requirements, it
needs to be substituted by an alternative well-structured Web
service SWN2 with similar behavior in the sense of Definition
11. The conclusion of Theorem 3 guarantees that SWN2 is
compatible with other partner well-structured Web services in
the composition. The new composite Web service can execute
successfully without the need of verifying the new composi-
tion again. Hence, Web services substitution can be directly

LI et al.: PN APPROACH TO ANALYZING BEHAVIORAL COMPATIBILITY AND SIMILARITY OF WEB SERVICES 517

Fig. 4. Algorithm for verifying the behavioral similarity of well-structured
Web services.

performed in the sense of context-independent similarity of
Web services presented in Definition 11.

To automatically perform the verification of behavioral sim-
ilarity, we developed an algorithm that checks if ws2 is similar
to ws1, as shown in Fig. 4. The rationale of the algorithm is
to search the communicating reachability graphs (CRGs) of
two Web services and verify their similarity in the sense of
Definition 11. As a kind of reachability graph, the CRG
of a Web service is used to analyze the behavior of its SWN
based on the state analysis. Details on the definition and the
constructing method of CRGs are presented in our previous
work [17], [33].

The concept of opposite Web services is useful for analyzing
the compatibility of Web services [12], [27]. For a Web service
ws, its opposite Web service ws is obtained when the actions
of sending messages are changed to that of receiving messages
and vice versa. It is easy to see that ws is compatible with
its opposite Web service ws, i.e., ws ∼ ws. We present the
following useful corollaries regarding the opposite Web service
that can be used to facilitate the verification of behavioral
compatibility.

Corollary 1: Given well-structured Web services ws, ws1,
and ws, we have ws1 � ws ⇒ ws1 ∼ ws.

Fig. 5. SWN of Web service ws4.

Fig. 6. SWN of Web service ws5.

Proof: According to Theorem 3 and ws ∼ ws, it is easy
to have ws1 ∼ ws. �

Corollary 2: Given the well-structured Web services ws,
ws1, ws2, and ws, we have

ws1 � ws ws2 � ws ⇒ ws1 ∼ ws2.

Proof: According to Corollary 1, we have ws1 ∼ ws. Ac-
cording to Theorem 3 and ws2 � ws, we have ws1 ∼ ws2. �

Fig. 5 shows the SWN of a Web service ws4. By using the
algorithm of Fig. 4, it is verified that ws4 is behaviorally similar
to ws3 in Fig. 3. Fig. 6 shows the opposite service (i.e., ws5)
of ws3. Both ws3 and ws4 are compatible with ws5, which
exemplifies the conclusions presented in this paper.

V. TOOL FOR SIMILARITY AND

EQUIVALENCE VERIFICATION

A tool has been developed to automate the verification of
behavioral similarity and equivalence of Web services using our
approach. The tool was developed as an analysis module of the
PIPE [29]. PIPE is an open-source implemented in Java, which

518 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 3, MAY 2011

Fig. 7. Snapshot of the tool for similarity analysis, which is integrated into the PIPE.

provides a platform-independent GUI for creating, editing,
and analyzing PNs. The PNs created by PIPE conform to an
XML-based interchange format, i.e., PN Markup Language
(PNML) [34].

At the top left of the interface in Fig. 7, PIPE v2.5 offers
several analysis modules to check behavioral properties such as
reachability graph and state space analysis. We implemented a
new module to perform the functionality of similarity analysis
of two SWNs. At the right side of the interface is the workspace
of PIPE, where SWNs can be modeled and represented as
intuitive diagrams. Each SWN is modeled in one tab of the
workspace. Internally, the SWN models are specified and
stored in PNML files. By double clicking the module label of
Similarity Analysis, a dialogue box pops up and asks users to
select the source SWN (left-hand side operand of the similar
operator “�”) and the target SWN (right-hand side operand of
the similar operator “�”). For demonstration purposes, Fig. 7
shows that the source SWN is ws3 and the target SWN is
ws4, which are also shown in Figs. 3 and 5, respectively. The
algorithm given in Fig. 4 has been implemented inside the
module. To perform the analysis of behavioral similarity and/or
equivalence using the algorithm, the user simply presses the
ANALYZE button, and then, the result appears as a formatted
report. The result shows that ws3 and ws4 are behaviorally
equivalent. In fact, on one hand, each interaction transition
sequence of ws3 corresponds to a similar one of ws4. On
the other hand, each interaction transition sequence of ws4
corresponds to a similar one of ws3.

We further validated our approach using several real-world
Web services. Fig. 8 shows the behavior of a weather forecast
Web service provided by the U.S. National Oceanic and Atmo-
spheric Administration (NOAA) (i.e., National Digital Forecast
Database XML/SOAP service www.nws.noaa.gov/xml).

As shown in Fig. 8, after receiving a place (either a zip
code or a city name) from a user, the NOAA’s weather forecast
Web service first performs the availability check of the place.
It then converts the available place into longitude and latitude
coordinates. Using the coordinates, the service provides the
map in which the place is located. The service also retrieves
the weather forecast by querying the NOAA National Digital

Fig. 8. Behavior of NOAA’s weather Web service [19].

Forecast Database. If the access to the database succeeds,
it delivers the weather forecast report. Otherwise, it sends a
message about access failure. The details of the Web service
are described in one of our recent papers [19].

Fig. 9 shows the SWN of the behavior of NOAA’s
weather Web service. For the sake of simplicity, the dec-
larations and business semantics of the SWN are defined
in the PNML file and omitted in the graph. The places
p1, p7, p8, and p9 in Fig. 9 are external message places
representing the input message (e.g., a zip code or a city
name), the location map, the weather forecast report, and
the access-failed message, respectively. World Weather Online
(WWO) is another Web service providing free weather forecast
data (http://www.worldweatheronline.com/). The behavior of
WWO’s weather service can be also modeled as the SWN
model using our tool. Fig. 10 is the screenshot that shows the
SWN of WWO’s weather service. The similarity analysis using

LI et al.: PN APPROACH TO ANALYZING BEHAVIORAL COMPATIBILITY AND SIMILARITY OF WEB SERVICES 519

Fig. 9. SWN of NOAA’s weather Web service.

Fig. 10. SWN of WWO’s weather Web service.

our tool reveals that the behaviors of the two weather Web
services shown in Figs. 9 and 10 are actually similar.

VI. DISCUSSIONS AND CONCLUSION

SOC is a promising paradigm for the integration of Web
applications. Web services composition is one of the key ob-
jectives for adopting such a computing paradigm. Traditionally,

it is very costly and time consuming to verify behavioral
compatibility for Web services composition; both conditions,
i.e., reachable termination and proper termination, need to be
checked.

This paper has provided a good number of specification
languages for formally describing Web services behaviors, such
as FSM [8], [10], [11], process algebra/pi calculus [12], [13],
and PNs [14]–[17]. Compared to FSM and process algebra, the
Petri-net-based approaches have a well-defined semantics for
describing both states and actions of Web services, as well as
a graphical representation. Web services behaviors based on
PN models can be analyzed by means of either formal anal-
ysis methods or simulation. Therefore, many research works
propose to model the behaviors of Web services based on
PN models [14]–[17], [33], [35]. As a high-level PN model,
the CPN model has a more compact and expressive power
[30] than basic PN models. Detailed comparison between CPN
models and other specification languages of Web services can
be found in [17]. Based on our previous work [17], [33], we
model Web services behaviors using SWNs which are labeled
CPNs with three disjoint types of places representing control
flows, external messages, and internal messages, respectively.
Compared to other similar specification languages, the advan-
tages of the SWN model are as follows: 1) It distinguishes
different message types of Web services using different color
sets; 2) it depicts different branches of Web services processes
using guard expressions; and 3) it represents Web services
messages and actions using labels. These advantages help de-
scribe and perform the compatibility and similarity analysis of
Web services behaviors. Specifically, the SWN model not only
provides a formalism to depict the internal logics and message
exchange sequences (i.e., behaviors) but also encompasses the
mechanisms of compatibility and similarity analysis of Web
services.

Based on the SWN model, we have presented a formal
definition of behavioral compatibility, which requires a more
relaxed condition than the existing approaches. To reduce
the complexity of verifying behavioral compatibility, we have
looked into the structural property of SWNs and have proposed
a novel notion of well structuredness of Web services. Based
on this notion, we proved that only reachable termination needs
to be checked when verifying behavioral compatibility among
well-structured Web services.

Service substitution is another significant issue with Web
services composition. Unfortunately, most existing notions of
behavioral similarity of Web services are inappropriate for
performing service substitution. Although many existing ap-
proaches utilize PNs to analyze behavioral compatibility, few
of them further explore appropriate definitions of behavioral
similarity and provide a user-friendly tool for the automatic ver-
ification. To this end, we have proposed the formal definition of
context-independent similarity that is in line with our definition
of behavioral compatibility. We concluded that substituting a
Web service in a composition can be performed in a transparent
way as long as the new Web service is similar to the substituted
one. We have provided an algorithm for the verification of
behavioral similarity based on our definitions. Furthermore,
we have developed a tool, which has been integrated into the

520 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 41, NO. 3, MAY 2011

open-source project PIPE, to automatically perform the verifi-
cation of behavioral similarity.

In our current work, the rationale of verifying behavioral
compatibility and similarity of Web services is to search the
CRGs. Based on the reachability analysis, our approach is still
not efficient, particularly with the increase of the state space.
The future work is to use the recently developed technique
based on elementary siphon [35]–[40] to reduce the complexity
of the problem. In particular, the recent work reported in [35]
has developed the method of using elementary siphons to deal
with BPEL-based services and overcome the complexity prob-
lem. We also plan to extend our work to quantify to what degree
a Web service is similar to another. Aside from that, we will ap-
ply our research results to two important research areas in SOC,
i.e., Web service discovery and Web services communities. For
service discovery, developers can use our approach to search
for candidate Web services of similar behaviors according to
a specified service profile. On the other hand, Web services
communities, which are a means that permits gathering Web
services of similar functionalities into groups, can be used
to accelerate the process of discovering and composing Web
services [41], [42]. Our proposed work can be used to facilitate
the establishment of these communities.

ACKNOWLEDGMENT

The authors would like to thank Prof. M. Zhou at the
New Jersey Institute of Technology, Newark, for his valuable
suggestions in improving the quality of this paper.

REFERENCES

[1] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
oriented computing: State of the art and research challenges,” IEEE
Comput., vol. 40, no. 11, pp. 38–45, Nov. 2007.

[2] J. Zhang, C. K. Chang, L. J. Zhang, and P. C. K. Hung, “Toward a service-
oriented development through a case study,” IEEE Trans. Syst., Man,
Cybern. A, Syst., Humans, vol. 37, no. 6, pp. 955–969, Nov. 2007.

[3] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and man-
aging Web services: Issues, solutions, and directions,” Int. J. Very Large
Data Bases, vol. 17, no. 3, pp. 537–572, May 2008.

[4] N. Srini and A. M. Sheila, “Simulation, verification and automated
composition of Web services,” in Proc. 11th Int. Conf. WWW, 2002,
pp. 77–88.

[5] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, “Automated
discovery, interaction and composition of semantic Web services,” Web
Semantics: Sci., Serv. Agents World Wide Web, vol. 1, no. 1, pp. 27–46,
Dec. 2003.

[6] M. P. Fanti and M. C. Zhou, “Deadlock control methods in automated
manufacturing systems,” IEEE Trans. Syst., Man, Cybern. A, Syst.,
Humans, vol. 34, no. 1, pp. 5–22, Jan. 2004.

[7] X. Li, Y. Fan, and F. Jiang, “A classification of service composition
mismatches to support service mediation,” in Proc. 6th Int. Conf. GCC,
2007, pp. 315–321.

[8] H. S. Chae, J.-S. Lee, and J. Bae, “An approach to checking behavioral
compatibility between Web services,” Int. J. Softw. Eng. Knowl. Eng.,
vol. 18, no. 2, pp. 223–241, Mar. 2008.

[9] Z. Maamar, D. Benslimane, G. K. Mostefaoui, S. Subramanian, and
Q. H. Mahmoud, “Toward behavioral Web services using policies,” IEEE
Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 38, no. 6, pp. 1312–
1324, Nov. 2008.

[10] B. Benatallah, F. Casati, and F. Toumani, “Analysis and management
of Web service protocols,” in Proc. Conceptual Modeling—ER, 2004,
pp. 524–541.

[11] H. Foster, S. Uchitel, J. Magee, J. Kramer, and I. C. London, “Compat-
ibility verification for Web service choreography,” in Proc. IEEE ICWS,
2004, pp. 738–741.

[12] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo, “Formalizing Web
service choreographies,” Electron. Notes Theor. Comput. Sci., vol. 105,
pp. 73–94, Dec. 2004.

[13] S. Deng, Z. Wu, M. Zhou, Y. Li, and J. Wu, “Modeling service
compatibility with pi-calculus for choreography,” in Proc. Conceptual
Modeling—ER, 2006, pp. 26–39.

[14] A. Martens, “On compatibility of Web services,” Petri Net Newslett.,
vol. 65, pp. 12–20, 2003.

[15] A. Martens, S. Moser, A. Gerhardt, and K. Funk, “Analyzing compatibility
of BPEL processes,” in Proc. Int. Conf. Internet Web Appl. Serv./Adv. Int.
Conf. Telecommun., 2006, pp. 147–155.

[16] C. Ouyang, E. Verbeek, W. M. P. van der Aalst, S. Breutel, M. Dumas,
and A. H. M. ter Hofstede, “Formal semantics and analysis of control
flow in WS-BPEL,” Sci. Comput. Program., vol. 67, no. 2/3, pp. 162–198,
Jul. 2007.

[17] W. Tan, Y. S. Fan, and M. C. Zhou, “A Petri net-based method for com-
patibility analysis and composition of Web services in Business Process
Execution Language,” IEEE Trans. Autom. Sci. Eng., vol. 6, no. 1, pp. 94–
106, Jan. 2009.

[18] M. De Backer, M. Snoeck, G. Monsieur, W. Lemahieu, and G. Dedene, “A
scenario-based verification technique to assess the compatibility of col-
laborative business processes,” Data Knowl. Eng., vol. 68, no. 6, pp. 531–
551, Jun. 2009.

[19] Q. Z. Sheng, Z. Maamar, H. Yahyaoui, J. Bentahar, and K. Boukadi,
“Separating operational and control behaviors: A new approach to Web
services modeling,” IEEE Internet Comput., vol. 14, no. 3, pp. 68–76,
May/Jun. 2010.

[20] H. R. M. Nezhad, B. Benatallah, A. Martens, F. Curbera, and F. Casati,
“Semi-automated adaptation of service interactions,” in Proc. 16th Int.
Conf. WWW, 2007, pp. 993–1002.

[21] P. C. Xiong, Y. S. Fan, and M. C. Zhou, “QoS-aware Web service configu-
ration,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 38, no. 4,
pp. 888–895, Jul. 2008.

[22] Y. Taher, D. Benslimane, M. C. Fauvet, and Z. Maamar, “Towards
an approach for Web services substitution,” in Proc. IDEAS, 2006,
pp. 166–173.

[23] J. Pathak, S. Basu, and V. Honavar, “On context-specific substitutability
of Web services,” in Proc. IEEE ICWS, 2007, pp. 192–199.

[24] N. Hameurlain, “Flexible behavioural compatibility and substitutability
for component protocols: A formal specification,” in Proc. 5th IEEE Int.
Conf. SEFM, 2007, pp. 391–400.

[25] A. Martens, “Simulation and equivalence between BPEL process
models,” in Proc. Des., Anal., Simul. Distrib. Syst. Symp. (DASD),
2005.

[26] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping,” ACM
Trans. Program. Lang. Syst., vol. 16, no. 6, pp. 1811–1841, Nov. 1994.

[27] L. Bordeaux, G. Salaün, D. Berardi, and M. Mecella, “When are two Web
services compatible?,” in Proc. Technol. E-Serv., 2005, pp. 15–28.

[28] S. Moser, A. Martens, K. Gorlach, W. Amme, and A. Godlinski, “Ad-
vanced verification of distributed WS-BPEL business processes incorpo-
rating CSSA-based data flow analysis,” in Proc. IEEE Int. Conf. SCC,
2007, pp. 98–105.

[29] P. Bonet, C. M. Llado, R. Puijaner, and W. J. Knottenbelt, “PIPE v2.5: A
Petri net tool for performance modelling,” in Proc. 23rd Latin Amer. Conf.
Informat. (CLEI), 2007.

[30] K. Jensen, Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use. Vol. 1, Basic Concepts. New York: Springer-Verlag, 1997,
ser. Monographs in Theoretical Computer Science.

[31] R. M. Dijkman, “Notions of behavioral compatibility and their implica-
tions for BPEL processes,” Centre Telematics Inf. Technol., Univ. Twente,
Enschede, The Netherlands, Tech. Rep. TR-CTIT-06-41, 2006.

[32] W. M. P. van der Aalst, “The application of Petri nets to workflow man-
agement,” J. Circuits, Syst. Comput., vol. 8, no. 1, pp. 21–66, 1998.

[33] X. Li and Y. Fan, “Modeling and logical correctness verification of Web
service processes,” Comput. Integr. Manuf. Syst., vol. 14, no. 4, pp. 675–
682, 2008, in Chinese.

[34] J. Billington, S. Christensen, K. van Hee, E. Kindler, O. Kummer,
L. Petrucci, R. Post, C. Stehno, and M. Weber, “The Petri Net Markup
Language: Concepts, technology, and tools,” in Proc. 24th Int. Conf.
Appl. Theory Petri Nets, Lecture Notes in Computer Science, 2003,
pp. 483–506.

[35] P. C. Xiong, Y. S. Fan, and M. C. Zhou, “A Petri net approach to analysis
and composition of Web services,” IEEE Trans. Syst., Man, Cybern. A,
Syst., Humans, vol. 40, no. 2, pp. 376–387, Mar. 2010.

[36] Z. Li and M. C. Zhou, “On siphon computation for deadlock control in
a class of Petri nets,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,
vol. 38, no. 3, pp. 667–679, May 2008.

LI et al.: PN APPROACH TO ANALYZING BEHAVIORAL COMPATIBILITY AND SIMILARITY OF WEB SERVICES 521

[37] Z. Li and M. C. Zhou, “Clarifications on the definitions of elementary
siphons in Petri nets,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,
vol. 36, no. 6, pp. 1227–1229, Nov. 2006.

[38] Z. Li and M. C. Zhou, “Control of elementary and dependent siphons in
Petri nets and their application,” IEEE Trans. Syst., Man, Cybern. A, Syst.,
Humans, vol. 38, no. 1, pp. 133–148, Jan. 2008.

[39] Z. Li, H. S. Hu, and A. R. Wang, “Design of liveness-enforcing super-
visors for flexible manufacturing systems using Petri nets,” IEEE Trans.
Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 4, pp. 517–526, Jul. 2007.

[40] P. C. Xiong, Y. S. Fan, and M. C. Zhou, “Web service configuration
under multiple quality-of-service attributes,” IEEE Trans. Autom. Sci.
Eng., vol. 6, no. 2, pp. 311–321, Apr. 2009.

[41] J. Bentahar, Z. Maamar, W. Wan, D. Benslimane, P. Thiran, and
S. Subramanian, “Agent-based communities of Web services: An
argumentation-driven approach,” Serv. Oriented Comput. Appl., vol. 2,
no. 4, pp. 219–238, Dec. 2008.

[42] Z. Maamar, S. Subramanian, P. Thiran, D. Benslimane, and J. Bentahar,
“An approach to engineer communities of Web services concepts, archi-
tecture, operation, and deployment,” Int. J. E-Bus. Res., vol. 5, no. 4,
pp. 1–21, 2009.

Xitong Li received the B.S. and Ph.D. degrees in
control science and engineering from the Tsinghua
University, Beijing, China. He is currently working
toward the Ph.D. degree in management science in
the Information Technologies (IT) Group, MIT Sloan
School of Management, Cambridge, MA.

His research interests include all aspects of effec-
tive management and use of data/information, e.g.,
data/information integration, economics of using
data/information, data/information quality, service-
oriented computing, Web services, business process

analysis, etc.

Yushun Fan received the B.S. degree in automatic
control from the Beijing University of Aeronautics
and Astronautics, Beijing, China, in 1984 and the
M.S. and Ph.D. degrees in control theory and ap-
plication from Tsinghua University, Beijing, in 1987
and 1990, respectively.

He is currently a Professor with the Department
of Automation, the Director of the System Integra-
tion Institute, and the Director of the Networking
Manufacturing Laboratory, Tsinghua University. He
authored ten books in enterprise modeling, workflow

technology, intelligent agent, object-oriented complex system analysis, and
computer-integrated manufacturing, respectively, and published more than 300
research papers in journals and conferences. His research interests include en-
terprise modeling methods and optimization analysis, business process reengi-
neering, workflow management, system integration and integrated platform,
object-oriented technologies and flexible software systems, Petri nets modeling
and analysis, and workshop management and control.

Quan Z. Sheng (S’03–M’06) received the Ph.D.
degree in computer science from the University of
New South Wales, Sydney, Australia, in 2006.

He is currently a Senior Lecturer with the School
of Computer Science, The University of Adelaide,
Adelaide, Australia. His research interests include
service-oriented architectures, distributed comput-
ing, and pervasive computing. He is the author of
more than 70 publications.

Dr. Sheng is a member of the Association for
Computing Machinery. He was the recipient of the

Microsoft Research Fellowship in 2003. He served on program committees for
dozens of conferences and was the Publication Chair of the 2005 International
Conference on Web Information Systems Engineering (WISE), the Program
Chair of the 2008 IEEE International Conference on Signal-Image Technology
and Internet-Based Systems, and the Publicity Cochair of the 2005 Interna-
tional Conference on Service Oriented Computing, WISE 2007, and the 2010
International Conference on Pervasive Services. He is the Program Chair of the
International Symposium on Web and Mobile Information Services WAMIS in
2010–2011.

Zakaria Maamar received the Ph.D. degree in com-
puter sciences from Laval University, Quebec City,
QC, Canada.

He is currently a full Professor with the Col-
lege of Information Technology, Zayed University,
Dubai, United Arab Emirates. His research interests
include Web services, mobile computing, and social
networks. He has published several papers in various
journals and conference proceedings.

Dr. Maamar is the founder of the annual Interna-
tional Symposium on Web Services.

Hongwei Zhu received the Ph.D. degree in technol-
ogy, management, and policy from the Massachusetts
Institute of Technology, Cambridge, MA.

He is currently an Assistant Professor of infor-
mation technology with the College of Business
and Public Administration, Old Dominion Univer-
sity, Norfolk, VA. Prior to that, he was a Research
Scientist with the MIT Information Quality Program.
He has also worked in industries as a Consultant and
a Senior Software Engineer. His research interests
include semantic data integration, data mining, data

reuse, quality of data standards, information quality management, and informa-
tion policy.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

