
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2008; 20:315–330
Published online 13 July 2007 inWiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1221

Towards workflow simulation
in service-oriented
architecture: an event-based
approach

Yanchong Zheng, Yushun Fan and Wei Tan∗,†

National Engineering Research Center for Computer Integrated Manufacturing
Systems, Department of Automation, Tsinghua University, Beijing 100084, China

SUMMARY

The emergence of service-oriented architecture (SOA) has brought about a loosely coupled computing
environment that enables flexible integration and reuse of heterogeneous systems. On building a SOA
for application systems, more and more research has been focused on service composition, in which
workflow and simulation techniques have shown great potential. Simulation of services’ interaction is
important since the services ecosystem is dynamic and in continuous evolution. However, there is a lack
in the research of services’ simulation, especially models, methods and systems to support the simulation
of interaction behavior of composite services. In this paper, an enhanced workflow simulation method
with the support of interactive events mechanism is proposed to fulfill this requirement. At build time,
we introduce an event sub-model in the workflow meta-model, and our simulation engine supports the
event-based interaction pattern at run time. With an example simulated in the prototype system developed
according to our method, the advantages of our method in model verification and QoS evaluation for
service compositions are also highlighted. Copyright © 2007 John Wiley & Sons, Ltd.

Received 23 March 2007; Accepted 1 April 2007

KEY WORDS: service composition; workflow simulation; event; data correlation

1. INTRODUCTION

Service-oriented architecture (SOA) is gaining increasing momentum in many domains such
as enterprise information systems, software architecture and grid computing. SOA promises to

∗Correspondence to: Wei Tan, National Engineering Research Center for Computer Integrated Manufacturing Systems,
Department of Automation, Tsinghua University, Beijing 100084, China.

†E-mail: tanwei@mails.tsinghua.edu.cn

Contract/grant sponsor: National Science Foundation of China; contract/grant number: 60674080
Contract/grant sponsor: China National High Technology R & D project ‘Business Coordination System Base on SOA’

Copyright q 2007 John Wiley & Sons, Ltd.



316 Y. ZHENG, Y. FAN AND W. TAN

provide a decentralized and loosely coupled environment that enables flexible, reliable and coordi-
nated integration of dynamic applications belonging to different organizations. Furthermore, more
and more companies are starting to organize their business processes by means of service aggrega-
tion; therefore, the importance of service composition has been widely recognized. Since service
compositions can be described as workflow models, it is natural to apply workflow technology to
automated service composition in the service-oriented paradigm, and there is much research work
on that topic [1–3].
Many studies have been devoted to the design, verification and performance analysis issues related

to Web service composition. Based on the XML Process Definition Language (XPDL), a model
of Web services workflow is proposed [4], thus bringing workflow into the web environment. By
employing Web service technology in the interaction, monitoring and control of process execution,
Li and Lu [5] proposed a framework for modeling and reusing workflows as sub-workflows in
service composition. Business Process Execution Language for Web Services (BPEL4WS) [6]
defines an interoperable integration model which facilitates the expansion of automated process
integration, and currently BPEL4WS is the de facto standard, supported by major companies in
this area. Zhao and Liu [7] studied the modeling of organization centered workflows and their
realization in the Web service environment via mapping to BPEL4WS. Particularly, Casati and
Shan [8] developed a model and architecture that employed the element of events to achieve dynamic
interaction between composite services; Wang et al. [9] proposed an ECA-rule-based method for
end users to compose Web services conveniently; Guo et al. [10] introduced Pi-calculus to address
the protocol level deadlock in grid workflows; Chandrasekaran et al. [11] explicated the power of
simulation as a part of Web service composition and process design; and Chang et al. [12], Song
and Lee [13] both utilized simulation techniques to evaluate service composition based on their QoS
properties.
The research efforts have demonstrated the strength of workflow and simulation techniques in

the design and performance analysis of service composition; however, to the best of our knowledge,
few of them have made substantial investigations in the implementation mechanisms for simulating
the actual behaviors of composite services. In other words, they neglect the interaction of internal
service nodes between different services, and this interaction will probably affect the correctness
and performance of composite services. In order to address this issue, we proposed an interactive-
event-based workflow simulation method in this paper. Our main contribution is that, with profound
analysis on the core mechanisms—the internal event interaction and data correlation, we made
simulation techniques applicable to a loosely coupled environment like that of service-oriented
computing.
The rest of the paper is organized as follows. In Section 2, a motivating example is presented. In

Section 3, we give the workflowmeta-model which serves as a foundation for performing simulation
in a service-oriented environment, and we explain briefly the major components within the meta-
model. Then, Section 4 elaborates on the core mechanisms of the workflow simulation method—the
internal event communication and corresponding data correlation, from both the build-time and run-
time perspectives. Section 5 covers the system architecture and relevant application programming
interfaces (APIs), and Section 6 gives important analysis results based on the information we
gathered through simulating the motivating example in the prototype system. Finally, conclusions
and future research directions are given in Section 7.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe



TOWARDS WORKFLOW SIMULATION IN SERVICE-ORIENTED ARCHITECTURE 317

Figure 1. A travel planning example.

2. A MOTIVATING EXAMPLE

Without loss of generality, now consider two service compositions that have internal interaction as
shown in Figure 1. It depicts a travel planning example including two separate composite service
processes that work jointly to accomplish planning requests from customers of the travel agency.
Composition 1 describes the workflow process for itinerary planning, while composition 2 is the
online ticket handling process. When the agency receives initial itinerary from its customer, it will
send the customer information to an independent online ticket system to acquire either quotations
or bundles, contingent on the customer type specified by the online system. Simultaneously in the
agency process, it will follow different procedures for existing or new customers to work out a
travel plan.
Note that there is plenty of data exchange between the internal service nodes of these two

compositions, which will affect the accomplishment of both workflows. For instance, the status of
the decision node ‘Customer type?’ in composition 1 determines which route to go after the decision
node ‘Bundles available?’ in composition 2, as bundles are only applicable to VIP customers of the
ticket system. Such control logic can hardly be modeled or simulated with traditional techniques,
thus arousing a need for specific supplements to the original meta-model as well as simulation
mechanisms.

3. THE WORKFLOW META-MODEL

In order to ensure the interoperability between heterogeneous workflow systems and the efficient
integration with other applications, we establish our workflow meta-model as an extension of
the meta-data model presented by the Workflow Management Coalition (WfMC) in its Work-
flow Process Definition Interface—XML Process Definition Language (Interface one: XPDL) [14],
enabling event communication in service computing environment by incorporating event elements.
Figure 2 shows the static structure of the meta-model via the UML class diagram.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe



318 Y. ZHENG, Y. FAN AND W. TAN

Figure 2. Static structure of the service-oriented workflow meta-model.

3.1. Sub-model definitions

The workflow meta-model is basically composed of four sub-models: the process sub-model, the
event sub-model, the participant sub-model and the simulation sub-model, with three different types
of relationship between individual elements—Generalization, Association and Aggregation. As the
participant sub-model is irrelevant to our topic, we will not discuss it for simplicity. Briefly, we
introduce the other sub-models as follows:
The process sub-model is composed of the classes Process, Workflow Process, Activity, Subflow,

Atomic Activity, Transition, Condition, Relevant Data, and Event Listener. As the semantics of the
classes except Event Listener complies with XPDL, we will not give detailed explanation here and
readers can refer to the corresponding specification [15]. Specially, as an important extension to
the XPDL model, we create the class Event Listener as an aggregated class to Workflow Process,
Atomic Activity and Subflow, in order to monitor both external and internal run-time events in the
lifecycle of workflow simulation, hence supporting the particular message communication patterns
in a service-oriented environment. Besides, the attribute ‘bCorrelationSet’ in the class Relevant
Data also plays a significant role in achieving data correlation in a loosely coupled environment.
Details regarding these points will be discussed more thoroughly in the next section.
The event sub-model comprises the class Event and its five inherited classes: Data Event, Status

Event, Alarm Event, Exception Event and Custom Event, serving as a fundamental part in the meta-
model to achieve the specific interaction pattern in a service-oriented environment. An event is the
encapsulation of any message which is transferred from one process/activity instance (or service
instance in the service-oriented context) to another in the conversation between these instances.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe



TOWARDS WORKFLOW SIMULATION IN SERVICE-ORIENTED ARCHITECTURE 319

Considering the characteristics of an event and its possible influence on the instance that initiates or
receives it, we classify events into five categories, each being represented by the above five inherited
classes. Data Event is used to specify those events having tight correlation with specific workflow
relevant data; Status Event is for those arising from status alteration of the instance; Alarm Event is
for those indicating duration or deadline limits for the execution of the instance; Exception Event is
for those stemming from faults during the execution of the instance; and Custom Event is employed
to provide extensibility for user-defined events. The common attribute ‘bInitiation’ defined in the
superclass Event specifies whether this event is used to initiate an instance for the service receiving
it; the attribute ‘ValidTime’ prescribes the time limit for a service instance to perform instance
matching; and the attribute ‘Action’ designates the specific action incurred by an event, which will
be interpreted by the ECA rule parser during workflow simulation and enactment.
The simulation sub-model consists of six classes—Simulation Info, Simulation Setting, Simulation

Statistics, Simulation Chart and Generator. Simulation Info is the abstract base class for the other
five classes, maintaining correlation with the process sub-model and defining commonly owned
attributes. Simulation Setting is used to set up simulation scenarios such as the simulation schedule;
Generator, a common class for traditional workflow simulation, is used to generate transaction
queues based on specific statistical distribution models; Simulation Statistics and Simulation Chart
are for presenting simulation results in user-defined formats.

3.2. Association definitions

As indicated before, there are three different kinds of relationship between individual elements in the
workflow meta-model: Generalization, Association and Aggregation. Generalization describes the
inheritance relationship between a superclass and its sub-classes; Aggregation shows the inclusion
relationship between two elements or between an element and itself; and Association establishes
the reference relationship between elements. We have assigned a name for each Association so
that the relationship can be understood more easily. For example, the Association ‘relates with’
from the class Process to Relevant Data specifies that certain workflow relevant data might be
correlated with an instance of Process, while ‘is assigned to’ from Participant to Atomic Activity
means that necessary resources or application systems must be allocated to activity instances, or
service instances in the service-oriented context, to support its execution.
Note that the multiplicity of an Association is indicated by the numeric signs near both ends of

an Association. Take the Association ‘correlates to’ for instance, it has the following multiplicity:
Data Event/Relevant Data= 0 . . . n/1 . . . n, which designates that an instance of Data Event must
be correlated to no less than one instance of Relevant Data, while an instance of Relevant Data
might not be correlated to any instance of Data Event, or it might be correlated to more than
one instance of Data Event. Such multiplicity in an Association defines the quantitative proportion
between the two associated classes.

4. SIMULATION MECHANISMS BASED ON INTERACTIVE EVENTS

In traditional simulation, individual generators are assigned to each workflow to generate ran-
dom transactions independently and essentially, such kind of simulation only deals with single
process, i.e. no interaction is incurred between the internal units of different workflows (see

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe



320 Y. ZHENG, Y. FAN AND W. TAN

Figure 3. Comparison of simulation patterns: (a) traditional simulation
and (b) simulation in service-oriented paradigm.

Figure 3(a)). However, workflow simulation in a service-oriented environment is intrinsically multi-
process involved—some service in a workflow may need to interact with a service in another which
is simulated simultaneously. In addition, there will also be external events acting on the internal units
other than the start node and influencing the simulation process (see Figure 3(b)). Under such cir-
cumstances, the simulation engine should be modified to support specific mechanisms for external
and internal event interactions, which will inevitably involve such issues as data correlation as well
as asynchronous communication between different processes and the like. Based on the meta-model
presented in the previous section, we will analyze the implementation of these mechanisms in the
service computing environment from both the build-time and run-time perspectives in this section.

4.1. Build-time analysis

As introduced before, the class Event Listener acts as an event monitor in the model. Through the
Association ‘monitors’, it contains a referenced attribute ‘InternalEvent:Event’, which actually is a
queue of received events (at this point, we have counted in the asynchronous property of message
communication in a service-oriented environment). Through the Aggregations toWorkflow Process,
Atomic Activity and Subflow, an instance of Event Listener is permanently bound to a certain process
instance, or activity instance, or sub-flow instance (in the service-oriented context, these are all
defined as service instances), so that the events received by this Event Listener can influence the
simulation of the corresponding process instance. Now look at the source of the events. Through
the Association ‘initiates/receives’, the class Event contains two referenced attribute from the class
Process (‘Source’ and ‘Target’), indicating where the events come from and where they would
go. Combining the above elements, these classes together with the associations between them
provide a foundation for the implementation of internal message conversation during multi-process
simulation.
Data correlation is a critical issue inherent in internal message communication. In traditional

single-process simulation, data flow within a process and need not cross the boundary between
different processes. Thus, the correlation of relevant data with process instances simply by instance
IDs works reasonably well. However, the use of such IDs to correlate data would be rather diffi-
cult and even somewhat non-sensical when considering internal communication in multi-process

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe



TOWARDS WORKFLOW SIMULATION IN SERVICE-ORIENTED ARCHITECTURE 321

simulation. In order to solve this problem, we introduce the concept of Correlation Set from
BPEL4WS [7] into our meta-model. On one hand, there is a Boolean attribute ‘bCorrelation-
Set’ in the class Relevant Data, with which we could define whether a relevant data would be
used as the correlation set. On the other hand, the class Event contains a referenced attribute
‘CorrelationSet:Relevant Data’ derived from the Association ‘correlates to’ with the class Relevant
Data. Whenever necessary, this referenced attribute would serve as a combination of all the rel-
evant data that is defined to be used as a correlation set, with the attribute ‘bCorrelationSet’ set
as TRUE, so that we could easily correlate relevant data with the right process instance receiving
the event.
On considering external events, we can simply regard them as random transactions. Therefore,

we establish the Association ‘binds to’ between the classes Event Listener and Generator. The
referenced attribute ‘ExternalEvent:Generator’ relates the instance of Event Listener to a specific
instance of Generator, with the latter defining the statistical distribution model of the external
events. In this way, we can take into account both internal message communication and external
event handling in the design phase of our workflow models.

4.2. Run-time analysis

We will explore in this section the event communication behavior of part of the service nodes in
the example presented in Section 2 during the running phase of simulation via the UML sequence
diagram shown in Figure 4. For the sake of conciseness, we merely depict the situation of one
customer in the diagram, and issues relevant to multiple concurrent customers will be rationally
inferred later.
Generally, each composition has an independent generator to produce random transactions. Once

the travel agency received requirement from a customer, i.e. a transaction arrived at the start node of
composition 1, it created an instance of the globally definedRelevant DataCustomerOrder (specified
as ‘CustomerOrder[1]’ in Figure 4) with ‘CustomerID’ as the Correlation Set. In executing ‘Input
customer Info’, it transferred the data to subsequent nodes in composition 1 on one hand, and on
the other initiated an instance of the Data Event CustomerInfo (‘DataEvent[1]’ in Figure 4), which
contained part of the data in CustomerOrder and must include the Correlation Set. When the event
listener aggregated in ‘Login to online ticket system’ received ‘DataEvent[1]’, it first performed
instance matching with existing pending transactions through the operation ‘InstanceMatch ()’,
using Correlation Set ‘CustomerID’ in the data event. Simulation involving other events is similar
to this first situation.
What if the matching of instance returned a false value regarding every instance in execution?

Our solution is that, the activity remains waiting for another instance to come for a predefined
period. If the waiting time exceeds the deadline, a timeout exception would be initiated and the
simulation engine would refer to the corresponding exception processing module. For this purpose,
we include in the class Event an attribute named ‘ValidTime’ (see Figure 2).
In most cases during simulation, there may be multiple transactions and events pending at a partic-

ular service node at a certain point of time. Under such circumstances, the event listener aggregated
in each node would create separate queues for each kind, by the attributes ‘InternalEvent:Event’ for
internal events, ‘ExternalEvent:Generator’ for external events and ‘TransactionQueue’ for random
transactions, respectively. As mentioned before, when the simulation engine encounters an event,

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe



322 Y. ZHENG, Y. FAN AND W. TAN

Figure 4. Simulation sequence diagram of the motivating example.

it would perform instance matching via the correlation set with each transaction in the queue until
it finds the right one, or wait for new transactions until a specific deadline if no matching can be
achieved with the existing instances. Simulation results regarding performance indicators of these
queues should be quite useful to the evaluation of QoS.
Moreover, the potential leverage of multi-process simulation in performing model verification

for service compositions, apart from the general function of simulation in performance analysis,
is shown above. In most situations, two interactive compositions are independent from each other,
thus possible error existed in the interaction logic between them can be revealed by examining
the simulation trajectory. Such analysis is of great value for designers to compose services more
effectively and correctly. Obviously, traditional simulation can never reveal such problems since
both compositions are executed independently.

5. SYSTEM ARCHITECTURE

As shown in Figure 5, the workflow modeling and simulation system based on our meta-model
consist of three layers: the user interface layer, the operation logic layer and the persistent storage
layer, with the workflow meta-model as the supporting framework. We will elaborate on each of
these layers hereinafter.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe



TOWARDS WORKFLOW SIMULATION IN SERVICE-ORIENTED ARCHITECTURE 323

Figure 5. Architecture of the workflow modeling and simulation system.

5.1. User interface layer

The user interface layer, which is mainly composed of the graphical modeling tool, the simulation
monitor and the data analysis interface, helps establish effective communication between users
and the system. The modeling tool offers an easy-to-use visual interface for the modelers, who
in turn can construct a multi-view enterprise model regarding the function, information, process,
organization and resource elements within the company, as well as their inherent relationship. With
an access to the model database, modelers can conveniently modify legacy models and create
new models as well. The simulation monitor performs real-time interaction with the workflow
engine during the process of simulation so as to provide real-time supervision upon some specific
objects which the analyzers might be interested in. For instance, we can observe the dynamic
utilization of some resource in the whole process of execution, which should be a useful basis for
doing further detailed capacity analysis. The data analysis interface equips the analyzers with the
ability to customize statistical reports according to multiple objectives, and its connection with the
simulation database enables it to retrieve necessary statistics any time.

5.2. Operation logic layer

The operation logic layer functions as the core of the whole system, achieving control over the
entire data and logic flows, as well as carrying out statistical calculation.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe



324 Y. ZHENG, Y. FAN AND W. TAN

typedef struct
{

WMTAttributeList correlation_set;
} WMTCorrelationSet
typedef WMTCorrelationSet * WMTPCorrelationSet;

typedef struct
{

WMTText event_id[UNIQUE_ID_SIZE];
WMTText event_name[NAME_STRING_SIZE];
WMTText event_type;
WMTInt32 priority;
WMTUInt32 valid_time;
WMTUInt32 action;
WMTPProcInst psource_proc_inst;
WMTPProcInst ptarget_proc_inst;
WMTPActivityInst psource_activity_inst;
WMTPActivityInst ptarget_activity_inst;
WMTPCorrelationSet pcorrelation_set;

} WMTEvent;
typedef WMTEvent *WMTPEvent;

typedef struct
{

WMTPEvent p_event;
WMTPAttributeList pcorrelated_data;

} WMTDataEvent;
typedef WMTDataEvent *WMTPDataEvent;

typedef struct
{

WMTPEvent p_event;
WMTPProcInstState pprev_proc_inst_state;
WMTPProcInstState pnew_proc_inst_state;
WMTPActivityInstState pprev_act_inst_state;
WMTPActivityInstState pnew_act_inst_state;

} WMTStatusEvent;
typedef WMTStatusEvent *WMTPStatusEvent;

typedef struct
{

WMTPEvent p_event;
WMTText alarm_type;
WMTUInt32 alarm_duration;
WMTUInt32 alarm_deadline;

} WMTAlarmEvent;
typedef WMTAlarmEvent *WMTPAlarmEvent;

typedef struct
{

WMTPEvent p_event;
WMTErrRetType exception_type;

} WMTExceptionEvent;
typedef WMTExceptionEvent *WMTPExceptionEvent;

Extended WAPI Data Types:

//Interface that creates a status event from a process instance
WMTErrRetType WMCreateStatusEventFromProcInst (

in WMTPSessionHandle psession_handle,
in WMTPProcInstState pprev_proc_inst_state,
in WMTPProcInstState pnew_proc_inst_state,
out WMTPStatusEvent pstatus_event)

//Interface that creates a status event from an activity instance
WMTErrRetType WMCreateStatusEventFromActInst (

in WMTPSessionHandle psession_handle,
in WMTPActivityInstState pprev_act_inst_state,
in WMTPActivityInstState pnew_act_inst_state,
out WMTPStatusEvent pstatus_event)

//Interface that creates a data event
WMTErrRetType WMCreateDataEvent (

in WMTPSessionHandle psession_handle,
in WMTPFilter pcorrelated_data_filter,
out WMTPDataEvent pdata_event)

//Interface that creates an alarm event with a duration limit
WMTErrRetType WMCreateDurationAlarmEvent (

in WMTPSessionHandle psession_handle,
in WMTUInt32 duration,
out WMTPAlarmEvent palarm_event)

//Interface that creates an alarm event with deadline
WMTErrRetType WMCreateDeadlineAlarmEvent (

in WMTPSessionHandle psession_handle,
in WMTUInt32 deadline,
out WMTPAlarmEvent palarm_event)

//Interface that creates an exception event
WMTErrRetType WMCreateExceptionEvent (

in WMTPSessionHandle psession_handle,
in WMTErrRetType exception_type,
out WMTPAlarmEvent pexception_event)

//Interface that receives an event
WMTErrRetType WMReceiveEvent (

in WMTPSessionHandle psession_handle,
in WMTPEvent p_event)

/*Interface that performs instance matching when receiving 
an event*/
WMTErrRetType WMInstanceMatching (

in WMTPSessionHandle psession_handle,
in WMTPFilter pcorrelation_set_filter,
in WMTPEvent p_event)

Extended WAPI Descriptions:

Figure 6. Data types and WAPI definition.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe



TOWARDS WORKFLOW SIMULATION IN SERVICE-ORIENTED ARCHITECTURE 325

The workflow engine is the kernel component of the operation logic layer, with the participant
allocator, the model interpreter, the ECA rule parser and the random number generator as supportive
components, and the analysis engine is for building up statistical analysis with respect to the
requirements received from the data analysis interface. The workflow engine is basically composed
of a logic controller and an event handler, with the former dealing with the navigation of logic flows
as well as data flows in a workflow model, and the latter handling particular events in a service-
oriented environment. The message communication and data correlation mechanisms described in
the previous sections are realized by the event handler, and pertinent functions are encapsulated in
this module.
The WorkflowManagement Application Programming Interface (WAPI) Specification by WfMC

[15] (Interface 2 & 3) has defined standard APIs which can be supported by workflow man-
agement products. These APIs, such as WMCreateProcessInstance, WMAssignActivityInstanceAt-
tribute, WMChangeActivityInstanceState, WMTAInvokeApplication, etc. are encapsulated in the
logic controller within the workflow engine. According to the conventions of the above specifica-
tion, we define several APIs (Figure 6) in the event handler module to support event handling and
data correlation.
The first table in Figure 6 defines some data types specific to the concepts of Correlation Set as

well as Event proposed in this paper, and the second table defines particular WAPIs, which realize
the corresponding message communication and data correlation mechanisms.

5.3. Persistent storage layer

The persistent storage layer consists of three databases: the model database, the workflow database
and the simulation database. The model database is mainly for storing the enterprise models con-
structed, as well as the underlying constraints and scheduling rules. The interaction between the
model database and the model interpreter in the operation logic layer prepares necessary model
information for simulation on one hand, and the interaction with the graphical modeling tool in
the user interface layer realizes the creation, modification and storage of the models, and in the
meanwhile offers support in the version management as well as the knowledge management during
the modeling process. The workflow database is for maintaining the relevant data and the instance
data which would be referred to and operated on during the course of simulation. Its communication
with the workflow engine ensures that the right data would be transferred at the right time to the
right instances. The simulation database is the database for those statistics calculated in simulation,
including dynamic real-time statistics as well as static results. This database interacts with both the
workflow engine and the data analysis engine, not only giving support in obtaining and recording
data in simulation, but also helping produce customized statistical analysis reports.

6. ANALYSIS OF THE MOTIVATING EXAMPLE IN THE PROTOTYPE SYSTEM

6.1. A snapshot of the system

Figure 7 shows the simulation snapshot of the motivating example in our prototype system. Apart
from the ordinary control flows between different elements within each workflow, there are also

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe



326 Y. ZHENG, Y. FAN AND W. TAN

Figure 7. A snapshot of the prototype system.

explicit event flows between the two workflows, represented by dotted lines, such as the event
flow carrying ‘Quotation’ information from ‘Provide normal quotation’ to ‘Propose a draft plan’,
and the like. Event flows which have a data annotation nearby transfer data events, while those
without notation represent status event flows. (For alarm events and exception events not included
in our example, we assign a clock and an error symbol, respectively, to each type for identification.)
Correlation sets formed by global data are passed along the event flows in order for instance
correlation. Different shades of the figures indicate different states of the elements during simulation,
e.g. dark-shaded rectangle means the activity is under execution, while light-shaded rectangle
represents that the activity is waiting for necessary resources to perform its tasks. The system is
developed on the Microsoft Visual C# platform, with SQL 2000 as the database.

6.2. Structure analysis of service compositions

The simulation trace for two certain customers in our example is given in Table I. Note that a dead
lock occurred in simulating travel planning for C2, when the agency workflow waited at the node
‘Propose a draft plan’ for response from the ticket handling workflow, while the latter sent back
bundles information to the node ‘Select a bunch’. Carefully comparing the simulation tracks of
both customers and examining the structure of both compositions, it is not difficult to find out the
radical cause for the dead lock—that is because in our example, the two compositions have distinct
criteria for classifying their customers: the agency classifies customers into new or existing ones,
while the ticket system categorizes customers into standard ones or VIPs. In the agency workflow,
if a customer is new to it, it will never examine whether a bundle is applicable but directly wait
for normal quotation from the ticket system so as to propose a draft plan. This logic works well

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe



TOWARDS WORKFLOW SIMULATION IN SERVICE-ORIENTED ARCHITECTURE 327

Table I. Simulation trace of some transactions.

Trace in itinerary planning
C1 Get itinerary → Input customer Info → Check in CRM system → Establish a new account→

Propose a draft plan → Get customer feedback → Finalize the travel plan → Calculate service
fee → Prepare invoice → Send invoice

C2 Get itinerary → Input customer Info → Check in CRM system → Establish a new account
Trace in ticket handling

C1 Login to online ticket system → Customer type? → Provide normal quotation → Receive orders
→ Require payment → Send tickets

C2 Login to online ticket system →Customer type? → Offer premium service bundles

if the assumption that a customer new to the agency is always a standard customer in the ticket
system is satisfied. However, this is not always true considering that the two compositions are
independent to each other. When a new customer of the agency is recognized as a VIP in the ticket
system, simulation will run into a dead lock, which is the case for the second customer in our
simulation. Compared to complex formal methods for model verification like Petri-net, revealing
such underlying error in the interaction logic between distinct compositions in an apparent way can
surely provide designers with helpful guidance to make necessary modification in either the structure
of individual compositions or the interaction pattern between them, hence making compositions
cooperate with each other more efficiently.

6.3. Workload analysis of service nodes

Aside from its benefit in model verification for service compositions, statistical results relevant to
events that are calculated during simulation can be used to evaluate the performance, in particular
to the work in this paper, the workload of corresponding service nodes. Such analysis can not only
point out the bottleneck of the system, but help give directions to achieving load equilibrium among
various services in a composition as well.
As an instance, we examined the workload of two distinct nodes, say, ‘Propose a draft plan’ and

‘Select a bunch’, in the motivating case. The performance indicator that we picked as a reflection of
the workload is the maximal queue length in either node at each simulation. We changed the total
transaction numbers generated in successive simulations from 10 to 50, and observed the maximal
length of the event queue corresponding to respective nodes. A comparison on the resulting statistics
is presented in the left part of Figure 8, from which we can easily figure out that the workload of
‘Propose a draft plan’ (the dark line) increased dramatically as the transaction size increased, while
that of ‘Select a bunch’ (the gray line) stayed low. This result has given us a hint that the service
node of ‘Propose a draft plan’ might be the bottleneck of the system.
Given the above outcome of preliminary analysis, we stepped a little further in a subsequent

analysis. Considering that ‘Propose a draft plan’ might be a bottleneck in the system, we changed
the resource allocation in the simulation settings and tried to find out how the workload of this
service would alter due to increase in available capacity. Indeed, we compared the effects of two
different kinds of capacity expansion (shown in the right part of Figure 8), one with increase in
available network bandwidth (the dark line), and the other in labor (the gray line). The result was
rather straightforward: the influence of expansion in network bandwidth on the performance of

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe



328 Y. ZHENG, Y. FAN AND W. TAN

Figure 8. Workload analysis.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe



TOWARDS WORKFLOW SIMULATION IN SERVICE-ORIENTED ARCHITECTURE 329

the service greatly outweighed that from labor increase. If costs are not so significant compared
to lead time or cycle time in the considerations of the organization, one feasible way to improve
performance should be to employ better networks.

7. CONCLUSIONS AND FUTURE WORK

Observing the lack of implementation mechanisms for simulating the actual behaviors of composite
services, we propose an interactive-event-based workflow simulation method which is adaptive to
the loosely coupled service computing environment. At build time, we extend the XPDL meta-
model to incorporate event elements, so that interactive event flows between individual workflows
can be explicitly modeled when services are designed. At run time, we developed a simulation
engine to support the event-based interaction pattern as well as data correlation.
Furthermore, based on some simple yet non-trivial analysis of the motivating example, we have

also revealed the advantage of our simulation method against traditional ones in performing model
verification for interactive service compositions, and this should be a promising issue in the research
of workflow simulation technique in service-oriented computing. On the other hand, although we
have shed some light on the strength of event-based simulation in evaluating service performance,
those tests were just far too simple in comparison to realistic problems. Not only do we need
to enrich our analyzing templates, but we should also take into account how to realize overall
performance measurement, in which case multiple aspects of performance such as costs, lead time,
resource utilization, etc. would be incurred. Also, research on involving qualitative elements like
customer satisfaction into the model can be another meaningful topic.

REFERENCES

1. Piccinelli G, Williams SL. Workflow: A language for composing web services. Proceedings of the International Conference
on Business Process Management 2003 (Lecture Notes in Computer Science, vol. 2678). Springer: Berlin, 2003; 13–24.

2. Jablonski S. Processes, workflows, web service flows: A reconstruction. Data Management in a Connected World (Lecture
Notes in Computer Science, vol. 3551). Springer: Berlin, 2005; 201–213. DOI: 10.1007/11499923 11.

3. Moscato F, Mazzocca N, Vittorini V et al. Workflow pattern analysis in web services orchestration: The BPEL4WS
example. Proceedings of the 1st International Conference on High Performance Computing and Communications (Lecture
Notes in Computer Science, vol. 3726). Springer: Berlin, 2005; 395–400. DOI: 10.1007/11557654 48.

4. Xiao Y, Chen D, Chen M. Research of web services workflow and its key technology based on XPDL. Proceedings of
the 2004 IEEE International Conference on Systems, Man and Cybernetics, vol. 3. IEEE Computer Society Press: Los
Alamitos, CA, 2004; 2137–2142. DOI: 10.1109/ICSMC.2004.1400643.

5. Li H, Lu Z. Decentralized workflow modeling and execution in service-oriented computing environment. Proceedings
of the 2005 IEEE International Workshop on Service-Oriented System Engineering. IEEE Computer Society Press: Los
Alamitos, CA, 2005; 29–34. DOI: 10.1109/SOSE.2005.9.

6. Andrews T, Curbera F, Dholakia H et al. Business Process Execution Language for Web Services, Version 1.1.
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/ [May 2003].

7. Zhao X, Liu C. Supporting relative workflows with web services. Proceedings of the 8th Asia-Pacific Web Conference
2006 (Lecture Notes in Computer Science, vol. 3841). Springer: Berlin 2006; 680–691. DOI: 10.1007/11610133 59.

8. Casati F, Shan MC. Event-based interaction management for composite E-services in eFlow. Information Systems Frontiers
2002; 4(1):19–31. DOI: 10.1023/A:1015374204227.

9. Wang Y, Li M, Cao J et al. An ECA-rule-based workflow management approach for web services composition.
Proceedings of the 4th International Conference on Grid and Cooperative Computing (Lecture Notes in Computer
Science, vol. 3795). Springer: Berlin, 2005; 143–148. DOI: 10.1007/11590354 19.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe



330 Y. ZHENG, Y. FAN AND W. TAN

10. Guo W, Yang Y, Zhai Z. Grid services adaptation in a grid workflow. Proceedings of the 4th International Conference
on Grid and Cooperative Computing (Lecture Notes in Computer Science, vol. 3795). Springer: Berlin, 2005; 172–177.
DOI: 10.1007/11590354 24.

11. Chandrasekaran S, Silver G, Miller JA et al. Web service technologies and their synergy with simulation. Proceedings
of the 2002 Winter Simulation Conference, vol. 1. IEEE Computer Society Press: Los Alamitos, CA, 2002; 606–615.
DOI: 10.1109/WSC.2002.1172937.

12. Chang H, Song H, Kim W et al. Simulation-based web service composition: Framework and performance analysis.
Proceedings of the 3rd Asian Simulation Conference (Lecture Notes in Computer Science, vol. 3398). Springer: Berlin,
2004; 352–360. DOI: 10.1007/b105611.

13. Song HG, Lee K. sPAC (Web Services Performance Analysis Center): Performance analysis and estimation tool of
web services. Proceedings of the 2005 International Conference on Business Process Management (Lecture Notes in
Computer Science, vol. 3649). Springer: Berlin, 2005; 109–119. DOI: 10.1007/11538394 8.

14. Workflow Management Coalition. Workflow Process Definition Interface—XML Process Definition Language, Version
1.0, October 2002.

15. Workflow Management Coalition. Workflow Management Application Programming Interface (Interface 2 & 3), Version
2.0, July 1998.

Copyright q 2007 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2008; 20:315–330
DOI: 10.1002/cpe


